Stem cell therapy to protect and repair the developing brain: a review of mechanisms of action of cord blood and amnion epithelial derived cells
نویسندگان
چکیده
In the research, clinical, and wider community there is great interest in the use of stem cells to reduce the progression, or indeed repair brain injury. Perinatal brain injury may result from acute or chronic insults sustained during fetal development, during the process of birth, or in the newborn period. The most readily identifiable outcome of perinatal brain injury is cerebral palsy, however, this is just one consequence in a spectrum of mild to severe neurological deficits. As we review, there are now clinical trials taking place worldwide targeting cerebral palsy with stem cell therapies. It will likely be many years before strong evidence-based results emerge from these trials. With such trials underway, it is both appropriate and timely to address the physiological basis for the efficacy of stem-like cells in preventing damage to, or regenerating, the newborn brain. Appropriate experimental animal models are best placed to deliver this information. Cell availability, the potential for immunological rejection, ethical, and logistical considerations, together with the propensity for native cells to form teratomas, make it unlikely that embryonic or fetal stem cells will be practical. Fortunately, these issues do not pertain to the use of human amnion epithelial cells (hAECs), or umbilical cord blood (UCB) stem cells that are readily and economically obtained from the placenta and umbilical cord discarded at birth. These cells have the potential for transplantation to the newborn where brain injury is diagnosed or even suspected. We will explore the novel characteristics of hAECs and undifferentiated UCB cells, as well as UCB-derived endothelial progenitor cells (EPCs) and mesenchymal stem cells (MSCs), and how immunomodulation and anti-inflammatory properties are principal mechanisms of action that are common to these cells, and which in turn may ameliorate the cerebral hypoxia and inflammation that are final pathways in the pathogenesis of perinatal brain injury.
منابع مشابه
Onm-19: The Role of Cord Blood Preservationin Cell Therapy
s:3604:"During pregnancy, the placenta delivers "cord blood" to the baby through the umbilical cord serving as a lifeline of nourishment from the mother to baby. At birth, "cord blood" remains in the umbilical cord and placenta and until recently, had typically been discarded. The tragedy of this practice is that "cord blood" contains very special cells called "stem cells". Recent advances in m...
متن کاملStem Cell Therapy in Pediatric Neurological Disorders
Pediatric neurological disorders including muscular dystrophy, cerebral palsy, and spinal cord injury are defined as a heterogenous group of diseases, of which some are known to be genetic. The two significant features represented for stem cells, leading to distinguish them from other cell types are addressed as below: they can renew themselves besides the ability to differentiate into cells wi...
متن کاملTherapeutic potential of cell therapy in the repair of hair cells and spiral ganglion neurons: review article
The mammalian cochlea is a highly complex structure which contains several cells, including sensory receptor or hair cells. The main function of the cochlear hair cells is to convert the mechanical vibrations of the sound into electrical signals, then these signals travel to the brain along the auditory nerve. Auditory hair cells in some amphibians, reptiles, fish, and birds can regenerate or r...
متن کاملTherapeutic Potency of Cord Blood Stem Cells in Patients with Cerebral Palsy: A Systemic Literature Review
Background: The main objective of this study was to systematically review the reported potency of cord blood stem cells in treating patients with neurological disorders such as cerebral palsy. Methods: PubMed, Scopus, and Cochrane were searched thoroughly on September 2016 using the following search terms: “Umbilical cord blood stem cells” AND “development” AND “cerebral palsy” to find articl...
متن کاملExtracellular Vesicles Derived from Human Umbilical Cord Perivascular Cells Improve Functional Recovery in Brain Ischemic Rat via the Inhibition of Apoptosis
Background: Ischemic stroke, as a health problem caused by the reduced blood supply to the brain, can lead to the neuronal death. The number of reliable therapies for stroke is limited. Mesenchymal stem cells (MSCs) exhibit therapeutic achievement. A major limitation of MSC application in cell therapy is the short survival span. MSCs affect target tissues through the secretion of many paracrine...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2013